رادیو تلسکوپ(تلسکوپ رادیویی)
در اوایل قرن هفدهم میلادی گالیله با ساختن تلسکوپ، چشم خود را به ابزاری مسلح نمود که میتوانست توانایی رصد او را افزایش دهد. هر چند امروزه تلسکوپهایی به مراتب قویتر و حساستر از آنچه گالیله ساخته بود، طراحی و تولید میشوند، اما اصل موضوع هنوز تغییر نکرده است. واقعیت این است که باید نوری وجود داشته باشد تا تلسکوپ با جمعآوری و متمرکز ساختن آن تصویری تهیه نماید.
جیمز کلارک ماکسول، فیزیکدان برجسته انگلیسی در قرن نوزدهم میلادی پی به ماهیت الکترومغناطیسی بودن نور برد. در واقع امواج الکترومغناطیسی تنها به نور محدود نمیشوند و طیف گستردهای را در بر میگیرند، اما چشم ما فقط قادر به ایجاد تصویر از محدوده خاصی از این طیف گسترده میباشد که ما آن را نور مینامیم. برای مشاهده و درک سایر طول موجهای ارسال شده به جانب ما، احتیاج به ابزاری جهت جمعآوری، آنالیز و آشکارسازی آنها به شکل صوت یا تصویر داریم..
امواج الکترومغناطیسی طیف بسیار وسیعی از طول موجهای بسیار کوچک تا بسیار بزرگ را در برمیگیرند. این امواج را با توجه به اندازه طول موج به هفت دسته مختلف تقسیمبندی میکنند که شامل امواج گاما با طول موجهایی کوچکتر از 9-10 سانتیمتر تا امواج رادیویی با طول موج بزرگتر از 10 سانتیمتر را شامل میشوند. همانطور که در شکل بالا ملاحظه میشود محدوده امواج نوری که قابل دیدن توسط چشم انسان میباشند، محدوده بسیار کوچکی از این طیف گسترده است. با حرکت از سمت امواج رادیویی به سمت امواج گاما، همزمان با کاهش طول موج، فرکانس آن و در نتیجه انرژی موج افزایش مییابد.
هنگامی که رصد از سطح زمین انجام میگیرد، دریافت و آشکارسازی امواج الکترومغناطیسی با مشکلی روبرو میشود که به اثرات جوّ غلیظ زمین مربوط میگردد. جوّ زمین تنها به محدوده امواج مرئی، مایکروویو و رادیویی، آن هم با جذب و پراکنده ساختن بسیار، اجازه عبور میدهد. از آنجاکه امواج مایکروویو بخشی از امواج رادیویی محسوب میشوند، مشاهده میشود که با آشکارسازی محدوده وسیع امواج رادیویی گسیل شده از آسمان، راه دیگری برای رصد اجرام سماوی گشوده میشود.
اختر شناسان از سال ۱۹۳۱ که کارل جانسکی ( K.Jansky ) به طور اتفاقی رادیو تلسکوپ را کشف کرد، بارها و بارها به این نکته پی بردهاند که جهان بسیار فراتر از آن چیزی است که چشم انسان قادر به دیدن آن است. با استفاده از رادیو تلسکوپها، آشکارسازهای مادون قرمز و ماورای بنفش و تلسکوپهای مخصوص اشعه X و اشعه گاما جزئیات بسیار دقیقی از کیهان آشکار شده است و معلوم شد که کیهان مملو از اجرام عجیبی همچون سیاهچالهها و تپاخترها است که نمی توان آنها را از ورای عدسی چشمی یک تلسکوپ نوری مشاهده کرد. در حقیقت هر قسمت از طیف الکترومغناطیس چیز های عجیب و منحصر به فردی را به اخترشناسان ارائه داده است.
ابزاری که برای مشاهده رادیویی آسمان مورد استفاده قرار میگیرد را تلسکوپ رادیویی مینامند که از نظر ساختار کلی بسیار شبیه یک رادیوی معمولی عمل میکند، بدین معنی که همانند رادیوهای معمولی از یک آنتن، یک آمپلی فایر و یک آشکارساز تشکیل شده است. آنتنها میتوانند از یک آنتن ساده و معمولی نیم موج دو قطبی، نظیر آنچه در گیرندههای تلویزیونی استفاده میشود، تا آنتنهای مجهز به بشقابهای عظیم 300 متری باشند..
در تلسکوپهای رادیویی نیز همانند آنچه در مورد همتای نوری آنها صادق است، بزرگ بودن سطح جمعآوری کننده امواج از دو جنبه مفید میباشد.
اول آنکه توان جمعآوری امواج برای رصد منابع ضعیف و یا خیلی دور افزایش مییابد و دوم اینکه توان تفکیک نسبت مستقیمی با قطر بشقاب آنتن دارد. هر چه، قدرت تفکیک تلسکوپی بیشتر باشد، توانایی آن برای جداسازی جزییات تصویر افزایش خواهد یافت. قدرت تفکیک تلسکوپها رابطه تنگاتنگی با سطح جمعآوری کننده امواج و طول موج آنها دارد. هر جه سطح جمعآوری کننده بزرگتر و طول موج امواج الکترومغناطیسی کوچکتر باشند، قدرت تفکیک تلسکوپ افزایش مییابد. مشکل تلسکوپهای رادیویی از اینجا شروع میشود که قدرت تفکیک یک تلسکوپ با طول موج دریافتی نسبت عکس دارد. تلسکوپهای رادیویی در مقابل همتایان نوری خود که موظف به جمعآوری و آشکارسازی امواجی در محدوده طول موج 4-10 تا 5-10 سانتیمتر میباشند، میبایستی امواجی با دامنه وسیع طول موج، از یک میلیمتر تا چندین متر را جمعآوری نمایند. این امر باعث میشود که توان تفکیک این گونه از تلسکوپها به شدت کاهش پیدا کند. برای مثال قدرت تفکیک یک تلسکوپ نوری 50 سانتیمتری، 2/0 ثانیه قوسی است، در حالی که قدرت تفکیک یک تلسکوپ رادیویی به خصوص، با همین قطر دهانه 138 درجه خواهد بود. اگر بدانیم که قرص کامل ماه در آسمان تنها 5/0 درجه قوسی است میفهمیم که چنین تلسکوپی عملاً کارایی ندارد. چنین تلسکوپی ماه را اصلاً نمیتواند ببیند.
اما از سوی دیگر و باز هم به دلیل طول موجهای متفاوتی که این دو گونه تلسکوپ در محدوده آنها رصد مینمایند، ساخت بشقابهای آنتن یک رادیو تلسکوپ بسیار سادهتر از ساخت یک آینه و یا عدسی است. صاف بودن سطح یک بازتاب کننده خوب، رابطه مستقیمی با طول موجِ امواجی دارد که باید از سطح آن بازتابیده شوند. میتوان فرض کرد، زمانی بازتاب کنندهای مورد قبول خواهد بود که قطر یا ضخامت هیچکدام از خُلَل و فَرجهای روی آن از 05/0 طول موج مورد نظر بیشتر نباشد، بنابراین بشقاب آنتنی که قرار است برای امواجی به طول موج حداقل 20 سانتیمتر، ساخته شود، مجاز به داشتن ناهمواریهایی تا قطر 1 سانتیمتر است. این مقدار ناهمواری که برای بشقاب تلسکوپ رادیویی مجاز به شمار میرود، برای آینه یک تلسکوپ نوری فاجعه به حساب آمده و عملاً آن را غیر قابل استفاده مینماید.
بنا به دلیل گفته شده است که میتوان رادیوتلسکوپهایی با یک بشقاب 300 متری ساخت، کاری که در مورد تلسکوپهای نوری به یک معجزه شباهت دارد. برای اینکه مقایسهای کرده باشیم، بد نیست بدانید که اگر میشد یک تلسکوپ نوری، با آینه 300 متری ساخت، قادر بودیم ستاره شعرای یمانی را به وضوح و پرنوری یک قرص ماه کامل مشاهده نماییم.
مزیت عمده استفاده از امواج رادیویی برای مشاهده آسمان، این است که حتی در نور روز و هوای ابری نیز میتوان رصد را ادامه داد. در طول روز پخش نور خورشید توسط مولکولهای گازیِ جوّ زمین باعث میشود که لایهای روشن و آبی اطراف ما را احاطه کند. شدت روشنایی جوّ زمین در روز به حدی است که از میان آن قادر به دیدن ستارههای کم فروغ بالای سرمان نمیشویم. تنها جرم پرنوری مانند خورشید و یا در بعضی زمانهای خاص، ماه نسبتاً کامل را میتوان در طول روز رؤیت کرد. همچنین نور مرئی قادر به گذر از لایههای ضخیم و متراکم بخار آب نمیباشد. این موضوع به طول موج کوچک نور وابسته است. هیچکدام از مواردی که یاد شد برای امواج رادیویی با طول موجهای بزرگی که دارند مانع و یا مزاحم شناخته نمیشوند و عملیات رصد رادیویی پیوسته ادامه دارد.
در مورد تلسکوپهای رادیویی بسیار عظیم، نظیر رادیو تلسکوپ 305 متری آرسیبو واقع در کشور پورتوریکو، یک مشکل اساسی وجود دارد و آن، این است که حرکت دادن چنین مجموعه عظیمی برای تنظیم روی سوژه مورد نظر، غیر ممکن میباشد. از این رو دانشمندان برای رصد یک جرم سماوی خاص، باید آنقدر صبر کنند تا در اثر چرخش زمین به دور خودش و یا خورشید، هدف در راستای دید این بشقاب بزرگ قرار گیرد..
برای رفع این مشکل و همچنین به دلیل نیاز به دستیابی به قدرت تفکیک بیشتر، روش دیگری در ساخت و استفاده از رادیو تلسکوپها به وجود آمده است که مبتنی بر تداخلسنجی رادیویی است.
در این روش مجموعهای از چند رادیو تلسکوپ به نسبت کوچکتر، با کمک هدایت کنندههای کامپیوتری در جهت خاصی تنظیم شده و سیگنالهای دریافتی از آنها آنالیز میشود تا تصویر واحد و واضحی به دست آید. اخترشناسان رادیویی با استفاده از روش تداخلسنجی قادر به رصد آسمان با دقتی افزون بر 001/0 ثانیه قوسی هستند. در این روش آنتنها را روی خطی که خط مبنا نامیده میشود، به دنبال هم نصب میکنند. معمولا نصب آنتنها روی ریلی عمود بر خط مبنا صورت میگیرد تا در صورت لزوم بتوان زاویه خط را نسبت به نصب مرجع تغییر داد. حال چنانچه امواج دریافتی عمود بر خط مبنا نباشند، تلسکوپها در فواصل زمانی متفاوتی، موج یکسانی را دریافت میکنند.
با استفاده از الگوریتمهای ریاضی و توجه به فواصل زمانی دریافت سیگنالها، میتوان موقعیت منبع رادیویی را با دقت بسیار خوبی تخمین زد. هر چه فاصله تلسکوپها از یکدیگر بیشتر باشد، اختلاف زمانی و در نتیجه دقت اندازهگیری افزایش خواهد یافت. در این روش، فاصله اولین تا آخرین تلسکوپ، معادل قطر بشقاب تلسکوپ واحد در نظر گرفته میشود. .
نمونهای از این گونه تلسکوپها، مجموعهای با نام "آرایه خیلی بزرگ" (VLA) میباشد که در نیومکزیکوی آمریکا قرار دارد و طول خط مبنای آن 36 کیلومتر است.
این مجموعه عظیم از 27 عدد تلسکوپ با قطر بشقاب 25 متر تشکیل شده است. آنتنها روی ریلهایی قرار گرفتهاند که به دانشمندان اجازه میدهد بتوانند آنها را در انواع چیدمانهای (آرایه)مختلف تنظیم نمایند.
جنبه های فنی رادیوتلسکوپها
رادیوتلسکوپها همانند دستگاههای رادیویی معمولی که در تمام منازل یافت میشود، کار میکنند. اما میان این دو وسیله، دو تفاوت عمده وجود دارد. اول امواجی که رادیوتلسکوپها مجبور به آشکار سازی آنها هستند، بسیار ضعیف بوده و دوم اینکه رادیوتلسکوپها باید تمام سیگنالهای دریافتی را برای آنالیزهای بعدی ذخیره نمایند. از نظر ساختمانی، یک رادیوتلسکوپ را میتوان به هشت قسمت اصلی و مهم زیر تقسیمبندی نمود:
1. آنتن
2. پیش تقویت کننده یا آمپلیفایر اولیه
3. مخلوط کننده
4. نوسان ساز
5. تقویت کننده موج متوسط یا آیاِف
6. آشکارساز مجذوری
7. تقویت کننده DC
8. ابزار ضبط اطلاعات
... آنتن
در عالم الکترونیک، آنتن به سیستمی مشتمل بر سیمها و یا سایر اجسام هادی گفته میشود که جهت ارسال و یا دریافت امواج رادیویی یا سایر طول موجهای امواج الکترومغناطیسی به کار میروند. این ایده اولین بار توسط گاگلیلمو مارکونی در سال 1897 ارائه شد.
در یک آنتن فرستنده، سیگنالهای رسیده از مدار الکتریکی باعث نوسان الکترونها در آنتن میشوند. حرکت بار الکتریکی باعث تولید میدان الکترومغناطیسی در اطراف خود شده و این میدان به نوبه خود امواج الکترومغناطیسی را در جهت خاصی که به طراحی آنتن بستگی دارد پخش میکند. برای مثال آنتن ایستگاههای رادیویی به گونهای طراحی میشوند تا امواج را در تمام جهات به طور یکسان پخش نمایند اما از آن سو آنتنهای یک دستگاه رادار امواج را در جهت خاصی منتشر مینماید.
در آنتنهای گیرنده، مسیر بر عکسی برای تولید جریان در مدار آنتن طی میشود. ابتدا امواج الکترومغناطیسی به گونهای باعث تحریک الکترونها میشوند که جریان القایی در مدار آنتن تولید میگردد، سپس این جریان در مدارهای الکتریکی خاصی تقویت و فیلتر شده و در نهایت اطلاعات آن استخراج میشود.
در رادیو تلسکوپها و یا در تلسکوپهای راداری، معمولا از آنتنهای بشقابی برای دریافت امواج استفاده میکنند. آنتن رادیوتلسکوپها آشکارترین بخش آن هستند. آنها موظفند امواج رادیویی فوقالعاده ضعیفی را که از اعماق فضا به زمین میرسد جمعآوری نمایند. اغلب این آنتنها بسیار بزرگ هستند تا تلسکوپ قادر به نگاه دقیقتر و عمیقتری به فضا باشد.
... پیش تقویت کننده
سیگنالهای رادیویی گسیل شده از فضا بسیار ضعیف هستند. ضعف این سیگنالها زمانی بیشتر نمایان میشود که بدانیم اگر تمامی انرژی حاصل از دریافت این سیگنالها را از ابتدای تاریخ مشاهده فضا با تلسکوپهای رادیویی، با هم جمع کنیم به سختی قادر به آتش زدن یک چوب کبریت خواهیم شد. متوسط انرژی سیگنالهای رادیویی که از فضا دریافت میشوند در حدود 5-10*2 وات میباشد.
برای اندازهگیری و مشاهده چنین سیگنال ضعیفی باید آنچه را که دریافت میکنیم میلیونها بار تقویت نماییم. اما مشکل زمانی خود را نشان میدهد که بدانیم ابزارهای الکتریکی که در رادیوتلسکوپها مورد استفاده قرار میگیرند، در زمان عملکرد نویزهای ضعیف و قوی فراوانی تولید میکنند. اگر قادر به تشخیص و حذف این اغتشاشات نباشیم، در فرآیند تقویت امواج، آنها نیز به شدت تقویت میشوند و امواج ضعیف دریافتی در پس امواج قوی اغتشاشی ناپدید میگردند.
نقش پیش تقویت کنندهها تقویت محدوده خاصی از امواج به گونهای است که کمترین اغتشاش را به آنها وارد کند. به همین دلیل اغلب، این تقویت کننده را تقویت کننده کم اغتشاش مینامند.
برای کاهش اغتشاشات، معمولا از ترانزیستورهای بسیار ویژهای در این تقویت کنندهها استفاده میشود و در ضمن، با سرد کردن آنها تا دماهای نزدیک به صفر مطلق، سعی میکنند تا جاییکه امکان دارد اغتشاشات کمتری تولید شود.
... مخلوط کننده
وظیفه مخلوط کننده کاهش و تغییر فرکانس سیگنالهای دریافتی از پیشتقویت کننده میباشد. این کار به دو دلیل انجام میگیرد. اول اینکه از نظر تکنولوژیکی، ساخت تقویت کنندهها، فیلترها و سایر قطعات الکترونیکی که قادر به کار با امواج فرکانس بالا باشند، سخت و گران است. دوم اینکه اگر ما تمام تقویتها را با فرکانسی که دریافت میکنیم انجام دهیم، امکان بازگشت امواج به آنتن و تولید پسخور به شدت افزایش خواهد یافت. این اثر مشابه حالتی است که یک سخنران میکروفن را بسیار نزدیک به دهان نگه دارد.
برای انجام این کار مخلوطکننده موظف است تا سیگنالهای دریافتی از پیشتقویتکننده را روی سیگنالهایی با طول موج بالا و فرکانس پایین که از دستگاه نوسان ساز دریافت میکند، سوار نماید. این کار در مخلوطکننده به دو شکل و همزمان صورت میگیرد به این معنی که مخلوطکننده دو موج خروجی دارد که یکی حاصل جمع دو ورودی و دیگری حاصل تفریق آنها است. با گذراندن این دو خروجی از یک فیلتر، هرکدام که فرکانس کمتری داشت، انتخاب شده و به عنوان سیگنال ورودی به تقویتکننده آیاِف فرستاده خواهد شد.
... نوسانساز
اکثر رادیوتلسکوپها از نوسانسازهای کوارتزی استفاده میکنند. مزیت عمده استفاده از کریستالهای کوارتز در تولید نوسان، پایداری خوب و اغتشاش کم در خروجی آنها است. از آنجاییکه طبیعت رادیوتلسکوپها اقتضا میکند تا در باند پهنی از امواج عمل نمایند، اغتشاش اندکی در نوسان تولیدی، قابل اغماض میباشد .اگرچه اغتشاشات آنقدر بزرگ نیستند که تولید مزاحمت نمایند اما باید مراقب بود که این اغتشاشات، نویزهای طبیعی سیستم را تشدید ننمایند، چراکه در آن صورت سیگنالهای خروجی تلسکوپ تغییر خواهد کرد و اغتشاشات همانند دریافت واقعی تفسیر خواهند شد.
... تقویت کننده آیاِف
در یک تقویت کننده موج متوسط با استفاده از فیلترهای مخصوصی، تنها به محدودهای خاص از امواج اجازه عبور میدهند. اگرچه محدودیتی در انتخاب فرکانس کاری تقویتکنندهای آیاِف وجود ندارد اما معمولا فرکانسهای 70، 45، 4/21 و 7/10 مگاهرتز در آنها به عنوان فرکانس کاری در نظر گرفته میشود. با این کار فرکانسهای زائد حذف شده و محدوده خاصی که مورد نظر است به شدت تقویت و آشکار میشود.
در رادیوهای رایج، مداری وجود دارد که به مجموعه آن کنترل خودکار بهره میگویند. این مدار برای دریافت صدایی واضحتر و شفافتر، تغییرات اندک و ناچیز در قدرت سیگنالهای دریافتی راحذف میکند. در رصد رادیویی این تغییرات اندک و جزئی دقیقا همان چیزی است که ناظران به دنبال آن هستند. بنابراین زمانی که از رادیوهای معمولی برای رصدهای رادیویی استفاده میگردد، این مدار را باید از کار انداخت.
... آشکارسازهای مجذوری
اگر فرکانس خروجی تقویتکننده آیاِف را به یک ولتسنج جریان مستقیم وصل کنیم، صفحه نمایشگر مقدار صفر را نشان خواهد داد. این امر به دلیل ماهیت نوسانی فرکانس است که زمانی بیش از صفر و زمانی کمتر از صفر است.
برای اینکه قادر باشیم تعریف خوب و قابل درکی از انرژی دریافتی از آسمان ارائه دهیم، معمولاً از قطعه سادهای برای هم علامت کردن و یا حذف قسمت منفی موج استفاده میکنیم. در اکثر رادیوتلسکوپها این قطعه ساده که یک دیود معمولی است، فقط به جریانهایی با ولتاژ مثبت اجازه عبور میدهد. به این ترتیب ولتاژی که ولتسنج نشان میدهد برابر با جذر ولتاژ ورودی است.
... تقویت کننده جریان مستقیم
در طی فرآیند مستقیمسازی ولتاژ و همچنین قبل از آن، مقادیر زیادی اغتشاش ناشی از عملکرد ابزارهای الکترونیکی به موج اصلی اضافه میشود. از آنجاییکه قدرت امواج دریافت شده از فضا بسیار ضعیف است، در لوای اغتشاشات هر چند کوچک پنهان خواهد شد.
برای کمرنگ کردن این موضوع معمولا از انتگرالگیرهایی با پله زمانی معلوم استفاده میکنند. این امر باعث میشود که قلههای بسیار بزرگ اغتشاشات روی سطح ملایم موج اصلی سرشکن شود و تنها اندکی قدرت موج دریافتی را تغییر دهد.
... ابزارهای ذخیره اطلاعات
اطلاعات به دست آمده بعد از این همه فرآیند و آنالیز، بسیار ارزشمند بوده و باید در جایی ذخیره شوند. این اطلاعات که معمولا ماتریس دو ستونهای از ولتاژ بر حسب زمان هستند را در قدیم توسط قلمهای خودکار و بر روی کاغذهای بسیار طویل به شکل نمودار ذخیره میکردند. امروزه این روش تقریبا منسوخ شده و اطلاعات بعد از تبدیل به سیگنالهای دیجیتال در یک کامپیوتر ذخیره و نگهداری میشوند.
اطلاعات ذخیره شده معمولا عبارتند از ولتاژ، پله زمانی دریافت، زمان دقیق ثبت اطلاعات و در نهایت دما. دمای محیط و سیستم در آنالیز اطلاعات ذخیره شده بسیار مهم است چون همانطور که تا به حال توضیح داده شد، دما نقش زیادی در تولید اغتشاشات الکتریکی دارد.
حاصل نگریستن به آسمان با یک رادیوتلسکوپ، عددی است که نماینده قدرت امواج دریافتی از آن محدوده میباشد. اگر زاویه دید رادیو تلسکوپ مورد استفاده 1 درجه باشد، با هر بار رصد مقدار عددی ولتاژی را به دست میآوریم که متناظر با قدرت امواج رادیویی گسیل شده از آن منطقه است. حال میتوان با چرخاندن رادیوتلسکوپ و دریافت اطلاعات سایر نقاط در آن حوالی، نقشه رادیویی منطقهای از آسمان را تهیه کرد. این نقشه رادیویی، ماتریسی از اعداد است که با توجه به زاویه دید تلسکوپ، وسعت مشخصی از فضا را در بر میگیرد. هر قدر زاویه دید تلسکوپ کوچکتر باشد، قدرت تفکیک تصاویر حاصل از آن افزایش مییابد. جدول زیر نمونهای از اطلاعات ذخیره شده از آسمان را نمایش میدهد که میتواند یک کهکشان دوردست باشد:
0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 1 2 1 0 0
0 1 2 3 1 1 0
0 1 2 4 2 1 0
0 1 3 5 3 2 1
0 1 2 5 4 2 1
0 1 2 4 5 4 1
0 1 2 3 4 3 2
0 1 2 2 3 2 1
0 1 2 2 2 2 1
0 1 1 1 2 1 0
0 0 1 1 2 1 0
0 0 0 1 1 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 0
نمایش عددی یک چشمه رادیویی توسط ماتریسی از اعداد